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The canonical covariant formalism (CCF) of the topological five-dimensional Chern–
Simons gravity is constructed. Because this gravity model naturally contains a Gauss–
Bonnet term, the extended CCF valid for higher curvature gravity must be used. In this
framework, the primary constraint and the total Hamiltonian are found. By using the
equations of the CCF, it is shown that the bosonic five-form which defines the total
Hamiltonian is a first-class dynamical quantity strongly conserved. In this context the
equations of motion are also analyzed. To determine the effective interactions of the
model, the toroidal dimensional reduction of the five-dimensional Chern–Simons grav-
ity is carried out. Finally the first-order CCF and the usual canonical vierbein formalism
(CVF) are related and the Hamiltonian as generator of time evolution is constructed in
terms of the first-class constraints of the coupled system.

KEY WORDS: Chern–Simons gravity; canonical covariant formalism; Einstein the-
ory.

1. INTRODUCTION

The Chern–Simons theories for gravity (or supergravity) in (2+ 1)
space–time dimensions were largely studied (Achucarro and Townsend, 1986;
Birmingham et al., 1991; Grignoni and Nardelli, 1991; Koehleret al., 1990,
1991a,b, 1992; Uematzu, 1985; Witten, 1988). From the mathematical point of
view they are related to knot theories (Witten, 1989a,b). In physical applications
they are useful in the description of the quantum Hall effect through the idea of any-
one (Iengo and Lechner, 1992). Moreover, as well known, in (2+ 1) dimensions
the Chern–Simons theories which are of topological nature are equivalent to the
standard Einstein theory of gravity together with the de Siter gravity, and conformal
gravity (or supergravity) (van Nieuwenhuizen, 1985). The Chern–Simons theories,
were also formulated in odd dimensions higher than three (Chamseddine, 1989),
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but in this last case they were not studied so much as in the three-dimensional
case. The usefulness to consider dimensions higher than three is the possibility to
study the (3+ 1)-dimensional world by means of a dimensional reduction process.
In particular in Grignani and Nardelli (1991) the (4+ 1)-dimensional Chern–
Simons theory was proposed as gauge theory of the five-dimensional de Sitter
groupsS0(1, 5) orS0(2,4). The topological model is based on the Chern–Simons
five-form

Ä5 = µ (dµ)2+ 3

2
µ3 dµ+ 3

5
µ5, (1.1)

whereµ is a Lie algebra-valued gauge field (connection one-form).
In terms of the Lie algebra generatorsT6̃ , the one-form connectionµ on an

arbitrary five-dimensional space–time manifold is written as follows

µ = µ6̃ν̃ T6̃ dxν̃ , (1.2)

where the compound index ˜ν = (ν, 5) withν = 0, 1, 2, 3, and the compound index
6̃(6, 6),6 = (a, 5) witha = 0, 1, 2, 3, runing the last one in a vector range (6 =
A) and in a tensor range (6 = AB).

Recently, the structure of the five-dimensional action of the Chern–Simons
theory of the de Sitter groupsS0(1,5) orS0(2,4) was analyzed from the geometrical
point of view by introducing a five-dimensional principal fiber bundle (Mac´ıas
and Lozano, 2001). In terms of the Chern–Simons five-form (1.1) the action is
written

I5 = k
∫

M5

Ä5, (1.3)

whereM5 is a compact five-dimensional manifold andk is a dimensionless cou-
pling constant because the gauge fieldµ has dimension one. The components of
the six-dimensional gauge field can be identified as follows

µ6 = ω̃AB, µA5 = Ṽ A, A = 0, 1, 2, 3, 5, (1.4)

where ω̃AB is the five-dimensional connection and̃V A is the five-dimensional
coframe (fünfbein) and they are related by the Maurer–Cartan equationR̃A =
dṼ A − ω̃A

.B3Ṽ B = 0, so the results are restricted to the Riemannian vanishing
torsion case. The corresponding indices are lowered or raised by the local Lorentz
metric.

Consequently, by ignoring boundary terms, the action (1.3) writes

I5 = 3k
∫

M5

εABCDE

(
R̃BC3R̃DE3Ṽ A + 2

3
λR̃DE3Ṽ A3Ṽ B3ṼC

+ 1

5
λ2Ṽ A3Ṽ B3ṼC3Ṽ D3Ṽ E

)
, (1.5)
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whereR̃AB = dω̃AB − ω̃AC3ω̃.BC is the curvature of theS0(1,4)-valued connection
andλ is related to the signature of the fifth-group indexλ = 1 for S0(2,4) and
λ = −1 for S0(1,5).

The first term in (1.5) is a Gauss–Bonnet one, the second term is the Einstein
term, and the last one is a cosmological constant term. This geometrical approach is
very interesting to study, for instance, the role of the Gauss–Bonnet term quadratic
in curvature which naturally arises in this picture. By means of the dimensional
reduction process to a compact four-dimensional manifold, the different terms
appearing in the effective action (1.5) can be found. In this context, the different
interactions of the gravitational field with the other fields, remains determined
only by geometrical arguments. In Mac´ıas and Lozano (2001), it is shown how
by means of a dimensional reduction process the five-dimensional Chern–Simons
gravity theory leads to aU (1) gauge theory nonminimally coupled to gravity with
nonlinear modifications to the standard Einstein–Maxwell-dilation theory. More-
over, it is possible to see that the corrections coming from the Gauss–Bonnet term
generalize the Kaluza–Klein model. The nonminimal coupling of the corrected
electromagnetic field to gravity lead to curvature coupling terms to the photon
polarization. As shown in Mac´ıas and Lozano (2001), it results in a polarization-
dependent deviation of the photon trajectories and consequently to an effective
mass for the photon.

The purpose of this paper is to study the five-dimensional Chern–Simons
gravity from the first-order canonical covariant formalism (CCF) point of view
(D’Adda et al., 1985; Foussats and Zandron, 1989, 1990; Lerdaet al., 1987;
Nelson and Regge, 1986). The CCF, besides providing the manifest covariance
of the field equations, shows how the construction of the algebra of constraints
and the Hamiltonian formulation using first-order formalism can be realized in
a very simple way. As it happens with the usual Dirac’s method for constrained
Hamiltonian systems, the CCF is more adequate to distinguish between the true
physical degrees of freedom and the apparent gauge degrees of freedom. In this
sense the CCF seems to be more adequate to understand the structure of the
gravitational field, and so new ideas about its quantization can be implemented
(D’Adda et al., 1985; Nelson and Regge, 1986). Because the five-dimensional
Chern–Simons theory leads to a higher curvature gravity model, the extended
CCF must be used (Foussats and Zandron, 1990), because it is the suitable method
to describe higher curvature gravities or supergravities.

To study the structure of the topological five-dimensional Chern–Simons the-
ory and taking into account the above mentioned advantage of the CCF, we will
write the fundamental equations of this model. Among others physical quanti-
ties, the primary constraints, and the total Hamiltonian as a first-class dynamical
quantity will be found and analyzed.

The paper is organized as follows: In Section 2, the general features of the
extended CCF are reviewed. In Section 3, the extended CCF is applied to the
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topological five-dimensional Chern–Simons theory. In Section 4, the dimensional
reduction process is carried out with the aim to analyze the effective interactions of
the four-dimensional theory. Finally in Section 5, it is shown how the usual vierbein
canonical formalism (CVF) can be obtained from the CCF: Next, by making the
space–time decomposition, the procedure to obtain the Hamiltonian as generator
of time evolution is also given.

2. DEFINITIONS AND PROPERTIES IN THE CCF

The group manifold approach (Ne’eman and Regge, 1978a,b) is a powerful
method used in the formulation of gravity and supergravity in any dimension. The
geometrical framework of this formalism is a principal fiber bundleG(M, H, π ).
The fiberH is a bosonic subgroup of the Lie (super)groupG and it is considered
as an exact symmetry group, therefore the Lagrangian densities for these theories
will be H -gauge invariants. The base manifoldM is the coset manifoldG/H and
the projectionπ remains defined by the mapπ : G→ M . The CCF for gravity and
supergravity on group manifold was proposed by D’Addaet al.(1985) and Nelson
and Regge (1986) and is based on the Hamiltonian theory for constrained systems.
To describe polynomial supergravities, i.e., supergravities whose Lagrangian con-
tain terms of higher order in curvatures, the CCF must be suitably generalized
(Foussats and Zandron, 1989, 1990; Lerdaet al., 1987).

In the CCF the exterior calculus is used, and so the formalism is covariant
in all steps and the exterior form derivatived takes place. On the contrary, the
CVF (see for instance Castelloniet al., 1982; Dirac, 1962; Nelson and Teitelboim,
1977, 1978) appears as related to the choice of a time component. That is, by
starting from the CCF where the Hamiltonian takes the exterior derivative as a
form observable, we must reproduce the CVF in which the Hamiltonian defines
the time derivative of an observable. Both formalisms are related but in a nontrivial
way (Foussats and Zandron, 1991). The CVF can be recovered from the CCF by
considering in this last case certain field equations as constraints strongly equal to
zero. As regarding the constraints, in the CCF contrarily to what happens in the
CVF, all the constraints are primary ones (there are no secondary constraints) and
none of them is first-class in the Dirac sense.

By following Foussats and Zandron (1990), in the ordinary CCF on a group (or
supergroup) manifoldG, the set of pseudoconnectiona-formsµ6 are introduced.
They are defined in the whole group (or supergroup) manifoldG. The compound
index6 label components of the boson (or fermion fields), and it can take values
in the scalar range, vector range, and tensor range (or spinor range). The pseudo-
connections or field variablesµ6 can be written in the basisdxM in terms of their
holonomic componentsµ6 = µ6.MdxM , where the indexM label coordinates on
the (super)group manifoldG. Really, the pseudoconnectionsµ6 have to be known
only on the coset manifoldM = G/H . Next these reduced forms are extended
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naturally to the whole group manifold throughH gauge transformations. This is
always possible because of theH -gauge invariance of the formalism. As it is well
known in a nonvacuum configuration the pseudoconnectionsa-formsµ6 does not
satisfy the generalized Maurer–Cartan structure equations and the difference from
zero defines the curvature (a+ 1)-formsR6(µ).

In the ordinary CCF the canonical momentaπ6 corresponding to a set of field
variablesµ6 preserving the requirement of general covariance, must be defined.
Because in the CCFdµ6 plays the role of velocities, the canonical conjugate
momentaπ6 remain defined as the [D − (a+ 1)]-forms by the equationπ6 =
∂L

∂(dµ6 ) , and the pairs of canonical variablesµ6 andπÄ verify the property

(µ6 , πÄ) = (−1)a+1+|6|δ6Ä (2.1)

wherea and|6| are respectively the degree and the Fermi grading of the formµ6 ,
In the Eq. (2.1) the so called “form-brackets” (,) were first introduced by D’Adda
et al. (1985).

In the CCF, the form-brackets between pairs of forms with the property (2.1),
really replace the role of the classical Poisson brackets in the CVF, even though
the form-brackets contain less information than the standard Poisson brackets.
The remaining properties of the form-brackets have been written in Eq. (2.2) of
Foussats and Zandron (1989).

In analogy with the classical mechanics, in the framework of the CCF the
canonical Hamiltonian is defined as the following geometrical bosonicD-form

Hcan= dµ63π6 − L (2.2)

whereL is the geometrical Lagrangian density, and whose properties has been
given in Foussats and Zandron (1990). The gravity (or supergravity) theories are
described by a polynomial Lagrangian of arbitrary degree in curvatures, i.e.,

L = 6p
1

p!
R613 · · ·3R6p3M p

61...6p
(2.3)

where the coefficientM p
61...6p

is a (D − 2p) (super)form, function of the field

variablesµ6 with constant coefficients.
By definition of curvatures, the following equations can be written

R6(µ) = dµ6 + 1

2
C6
·Ä1µ

Ä3µ1 = 1

2
R6·Ä1µ

Ä3µ1, (2.4)

whereC6
.Ä1 are the graded structure constant of the graded Lie algebra associated

to the supergroup manifoldG. By defining the set of two-forms with constant
coefficientsC6 = 1

2C6
·Ä1µ

Ä3µ1, it is possible to write

dµ6 = R6 − C6 = 36. (2.5)
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Looking at the action (1.5) written in the five-dimensional space, and be-
cause of the field variablesµ6 are bosonic 1-forms, the Lagrangian density is a
polynomial quadratic in curvatures. The first step is to write the polynomial in the
variables36 = dµ6 instead of using the variablesR6 by taking into account the
above equation. When the variablesµ6 and36 are considered as independents,
it is necessary to introduce a set of constraints (36 − dµ6) with the correspond-
ing arbitrary Lagrange multipliersβ6 . Therefore, the Lagrangian density can be
rewritten as follows

L = ν +363ν6 + 1

2
3633Ä3ν6Ä + (36 − dµ6)3β6. (2.6)

where

ν = M + 1

2
C63CÄ3M6Ä + C63M6 , (2.7a)

ν6 = M6 + CÄ3M6Ä, (2.7b)

ν6Ä = M6Ä. (2.7c)

The Lagrange multipliersβ6 are a priori arbitrary and they will be determined
later on.

On the other hand, in the CCF the Bianchi identity∇R6 = d R6 −
(R6 , HT ) = 0 is directly written asd36 = 0.

So, in the extended CCF valid for higher curvature the starting point is to
consider the field variablesµ6 ,36 andβ6 as independent ones. Therefore we
must define the canonical conjugate momentaπ6 , P6 and H6 correspondent to
the field variablesµ6 ,36 , andβ6 respectively, verifying each canonical pair the
relation (2.1).

Corresponding to this new variables, the relationship between the field and
momentum variables not dependent on the velocities, gives rise to the following
three set of primary constraints

86 = π6 + β6 ≈ 0, (2.8a)

96 = P6 ≈ 0, (2.8b)

ϕ6 = 56(β) ≈ 0, (2.8c)

For pure geometrical models, the fundamental equation introduced in the
CCF involving the form-brackets takes the form

d A= (A, HT ), (2.9)

whereA is a generic polynomial in the canonical variables. Really, in analogy with
the equationdf/dt= [ f, H ] + ∂ f/∂t of the classical mechanics, when external
fields are present, the Eq. (2.9) must be changed byd A= (A, HT )+ ∂A. The
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operator∂ already defined in Nelson and Regge (1986), acts nontrivially on external
fields only.

We note that the Lagrangian density is defined at least of a total exterior
derivative, so the canonical momenta as well as the primary constraints are not
univocally defined.

By using the above equations and the form-brackets properties it is possible
to show that the uniques primary constraints remaining in the formalism are those
given by the Eq. (2.8a). Moreover, the following condition of preservation of the
primary constraints (or Dirac’s consistency condition) is verified

d86 = (86 , HT ) ≈ 0. (2.10)

The Eq. (2.10) guarantees that there are no secondary constraints in the CCF.
Another peculiarity of the primary constraints86 can be seen when the form-
brackets between constraints are computed. In general the following different
from zero expression is obtained

(86 ,8Ä) = Q6Ä,Ä1...Änµ
Ä13 . . .3µÄn , (2.11)

showing that none of the primary constraints is first class.
According to (2.10), when in Eq. (2.9) we takeA = 86 , and after the form-

brackets are explicitly computed, the field equations of motion in the framework
of the CCF are found, i.e.,

d86 = −(Field equation of motion)+ (86 , ZÄ
)
38Ä ≈ 0. (2.12)

whereZÄ ≈ 3Ä (see Eq. (2.29) of Foussats and Zandron (1989)).
Of course, when in Eq. (2.9) is takenA = R6 , it gives rise to the Bianchi

identity equations.
The set of primary constraints86 , (in general [D − (a+ 1)]-(super)forms)

are obtained directly from the Lagrangian density, and they are the relationship
between field and momentum variables not depending on the velocity. Once the
primary constraints are computed the total HamiltonianHT as first-class dynamical
quantity remains determined. Following (Foussats and Zandron, 1989) and by
straightforward computation it can be shown that in the extended CCF the total
Hamiltonian results

HT = Hcan+36386 , (2.13)

where in this caseHcan is given by

Hcan= −ν + 1

2
3633Äν6Ä. (2.14)

It is possible to show that the total Hamiltonian thus defined is a first-class dynam-
ical quantity strongly conserved, i.e.,

d HT = (HT , HT ) = 0. (2.15)



P1: JQX

International Journal of Theoretical Physics [ijtp] pp1009-ijtp-474208 November 12, 2003 0:50 Style file version May 30th, 2002

2712 Zandron

Finally, the consistent condition applied to the set of primary constraints96 ,
i.e, d96 = (86 , HT ) ≈ 0, allows us to solve the functionβ6 as a functional of
µ6 and36 . So, it is written

β6 = −(ν6 +3Ä3ν6Ä), (2.16)

and can be eliminated.
The above results will be applied to the topological five-dimensional Chern–

Simons theory.

3. FIVE-DIMENSIONAL CHERN–SIMONS GRAVITY

In this case the field independent variables are the five-dimensional spin
connection ˜ωAB, the fünfbeinṼ A, 3̃AB, and3̃A. Taking into account the preceding
section, the five-form Lagrangian density of the Chern–Simons gravity model is
written

L = ν̃ + 3̃BC3ν̃BC + 1

2
3̃BC33̃DE3ν̃BCDE, (3.1)

where

ν̃ = εABCDE

(
Ṽ A3C̃BC3C̃DE + 2

3
λṼ A3Ṽ B3ṼC3C̃DE

+ 1

5
λ2Ṽ A3Ṽ B3ṼC3Ṽ D3Ṽ E

)
, (3.2a)

ν̃BC = εABCDE

(
2Ṽ A3C̃DE + 2

3
λṼ A3Ṽ D3Ṽ E

)
, (3.2b)

ν̃BCDE= 2εABCDEṼ
A. (3.2c)

Therefore the canonical Hamiltonian five-bosonic-form remains defined by

Hcan= −ν̃ + 1

2
3̃BC33̃DE3ν̃BCDE, (3.3)

consequently the total Hamiltonian reads

HT = Hcan+ 3̃AB38̃AB + 3̃A38̃A. (3.4)

The primary constraints are the three-forms8̃AB and8̃A corresponding to
the canonical momenta ˜πAB andπ̃A respectively. They can be computed straight-
forward and read

8̃AB = π̃AB − 2εABCDEṼ
C3

(
3̃DE + C̃DE + 1

3
λṼ D3Ṽ E

)
≈ 0, (3.5a)

8̃A = π̃A ≈ 0. (3.5b)
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By straightfoward algebraic manipulations the following equations of motion
can be found

εABCDE(R̃AB + λṼ A3Ṽ B)3(R̃C D + λṼC3Ṽ D) = 0. (3.6a)

εABCDE(R̃AB + λṼ A3Ṽ B)3R̃C = 0. (3.6b)

where in the last equatioñRA = dṼ A − ω̃AB3Ṽ B is the torsion two-form that
assuming the Riemannian case isR̃A = 0. TheS0(1, 4) two-form curvaturẽRAB

was defined in the introduction.
Since the Lagrangian density is defined at least of a total exterior derivative,

therefore it can be seen that an equivalent set of constraints is given by

8̃AB = π̃AB − εABCDEω̃
DE33̃C − 2ω̃E F3Ṽ M3

× (ω̃D
.BεAMEFD− ω̃D

.AεBMEFD
) ≈ 0, (3.7a)

8̃A = π̃A − 2λω̃BC3Ṽ D3Ṽ EεABCDE− ω̃BC33̃DEεABCDE

− 2ω̃BC3ω̃DG3ω̃.EG εABCDE≈ 0. (3.7b)

Obviously, the consistent condition applied to the set of constraints (3.7), reproduce
the same equations of motion.

4. DIMENSIONAL REDUCTION AND EFFECTIVE INTERACTIONS

Since in five dimensions the Lagrangian density or the total Hamiltonian
for the Chern–Simons model is quadratic in the curvature, once the dimensional
reduction process is carried out, terms of the same type in the four-dimensional Rie-
mann curvature appear in a Gauss–Bonnet combination. Hence, from this model a
Gauss–Bonnet term arises in a natural way by means of purely geometrical argu-
ments. Moreover, in the four-dimensional manifold it corresponds to a boundary
term, and therefore it does not contribute to the field equations.

At this stage we carry out the dimensional reduction process by assum-
ing that the vacuum topology is given byM4× S1. Thus, the compact fifth-
dimension coordinate isx5 = θr (0≤ θ ≤ 2π ), where r is the compactifica-
tion radius. The coordinates in the five-dimensional manifold are denoted by
x4 = (xa, θr ) (a = 0, 1, 2, 3). Latin indices (i.e. a,b,c,. . .etc.) are used in tan-
gent space and reserve Greek indices for space–time tensors. The signature in the
tangent four-dimensional space isηab = ηab = (−1,+1,+1,+1).

In (3+ 1) dimensions the vierbein one-formVa = Va
µdxµ is specified by

giving a complete basis of orthonormal covariant vectors one-forms (Foussata and
Zandron, 1991) in each point of the space–time

ηabVa.
µ Vb.

ν = gµν , (4.1a)
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or

Va.
µ Vb.

ν gµν = ηab. (4.1b)

Then, as usual by using a space–time Killing vectorξ as the fifth-basis vec-
tor, the five-dimensional metric tensor splits into the four-dimensional metric
tensorgµν(x), the electromagnetic vector potentialAµ(x) and the scalar dila-
ton fieldσ (x), and so the metric writesds2 = σ−1/3(x)[gµν dxµdxν − σ x(dx5+
κ Aµ(x) dxµ)2]. It is possible to work in the horizontal lift basis in which the
electromagnetic vector potentialAµ(x) does not appear explicitly in the metric
(Macı́as and Lozano, 2001).

Thus, the toroidal-dimensional reduction process yield to an effective four-
dimensional theory with anU (1) gauge symmetry containing nonminimal cou-
plings to gravity and nonlinear contributions to the usual Einstein–Maxwell–
dilation theory.

The reduced one-forms (Ṽ A, ω̃AB) define a complete basis in the five-
dimensional cotangent space of the coset manifoldM = G/H . To write the effec-
tive Hamiltonian (or Lagrangian) it can be seen that the one-formṼ A splits into
Ṽa andV5 and analogously the five-dimensional spin connection splits into

ω̃ab = ωab+ κ
2
σ 1/2FabV5, (4.2a)

ω̃b5 = κ

2
σ 1/2Fb

.cVc + 1

2
σ−1∂bσV5. (4.2b)

In the above equationsωab is the four-dimensional Lorentz spin connection
that satisfies the structure Maurer–Cartan equationdVa − ωa

.bVb = 0 (vanish-
ing torsion condition in four dimensions). The zero-formFab = FµνVaµVbν =
VaµVbν(∂µAν − ∂νAµ), is the field strength for the electromagnetic four-potential
gauge fieldAµ.

Next by using the definition of the two-form curvatureR̃AB that splits into
(R̃ab, R̃a5) it is possible to write the following equations for the components of the
curvature two-form

R̃ab = Rab+ κ
2
σ 1/2∇Fab3V5+ κ

2

4
σ
(
Fa
.cFb

.d + FabFcd
)

Vc3Vd

+ κ
4
σ−1/2

(
∂bσ Fa

.c − ∂aσ Fb
.c + 2∂cσ Fab

)
Vc3Ṽ5, (4.3a)

R̃a5 = κ

2
σ 1/2∇Fa

.b3Vb + κ
4
σ−1/2

(
∂cσ Fa

.b + ∂aσ Fcb
)

Vc3Vb

+ 1

2
σ−1(∇∂aσ + 2σ−1∂aσ∂bσVb)3V5, (4.3b)

In the Eq. (4.3a)Rab is the four-dimensional Riemannian curvatureRab =
dωab− ωa

.c3ω
cd, and the Lorentz covariant derivatives of the zero formsFab and
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∂aσ respectively read

∇Fab = d Fab− ωa
. cFcb+ ωb

.cFca, (4.4a)

∇∇Fab = Ra
.cFcb− Rb

.cFac, (4.4b)

∇∂aσ = d∂aσ − ωa
.c∂

cσ. (4.4c)

By writing in the Eq. (3.1) separately the partsa and 5, the contribu-
tions coming from the quadratic part iñRAB splits in two pieces, namely
ε5abcdV53 R̃ab3 R̃cd − 4ε5abcd Ṽa3 R̃5b3 R̃cd. The lagrangian density (3.1)
also contains the linear term iñRAB and a constant cosmological term.

Subsequently, to write the lagrangian density in term of quantities of the
four-dimensional manifold, the Eq. (4.2) and (4.3) must be systematically used.
To study the effective interaction terms it is convenient to consider the bosonic
five-form (3.1) rewritten in components. Moreover, the Riemann curvature two-
form Rab = Rab

..µν dxµ3 dxν is written in terms of their anholonomic components
Rab
..cd, whereRab

..cd = Rab
..µν V .µ

c V .ν
d .

Thus, the effective action corresponding to the lagrangian density can be
written in terms of anholonomic components. By straightforward algebraic ma-
nipulations it is easy to show that the terms in two covariant derivatives, appearing
when Eq. (4.3) are used, are transformed into surface terms plus nonderivative
terms. Moreover, the four-dimensional Gauss–Bonnet term as well as the surface
terms, give a total derivative contribution to the action, and so they can be neglected.

In this context the nonlinear corrections to electromagnetism (Weinberg,
1995) and the nonminimal coupling to gravity in the limit of heavy dilation case
σ = 1, were well analyzed in Mac´ıas and Lozano (2001).

Analogously, canonical momenta, constraints, and equations of motion can
be decomposed into the parts a and 5, writing in this way all the quantities and the
equations in the four-dimensional manifold.

In the next section the relation between the CCF and the CVF will be treated
to obtain the proper Hamiltonian as generator of time evolutions.

5. RELATION BETWEEN THE CCF AND THE CVF:
SPACE–TIME DECOMPOSITION

At first it must be pointed out that the CCF is not a proper Hamiltonian theory,
because it does not define a standard mechanical system as it is the case of the CVF
which propagates data defined on an initial hypersurface6. In the construction of
the CCF the form-brackets are introduced and they must be related to the usual
Poisson brackets defined in the CVF.

The form-brackets have only part of the information contained in the stan-
dard Poisson brackets introduced in the CVF, and this relation is nontrivial. By
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considering the form brackets (A, B) (forms of degreea+ b− 3) protected on an
hypersurface6, and a subset of Poisson brackets (forms of degreea+ b) defined
on6 ×6, both can be related by means of the following integral equation (Nelson
and Regge, 1986).

(−1)a+1
∫
6

α 3 (A, B)3β =
∫ ∫

6×6
α(x)3 [ A(x), B(y)]3β(y). (5.1)

whereα andβ are test forms of degrees 3− a and 3− b respectively. The Poisson
brackets between forms [A(x), B(y)] appearing in (5.1) and their properties are
well given in Nelson and Regge (1986).

Consequently, from the Eq. (5.1) it can be seen that the Poisson brackets yield
more information than the form-brackets.

On the other hand, the first-class dynamical quantity defined in the CCF as the
total Hamiltonian density is not the proper Hamiltonian generator of time evolution
of generic functionals of fields and momenta. So, from the bosonic form (3.4) the
generator of the time evolution must be constructed. This procedure is connected
with the fact that the Hamiltonian formalism in the CVF appears as related to the
choice of a time component, losing in this way the manifest covariance of the
formalism.

We assume that the dimensional reduction process already was carried out,
and all the quantities are defined inM4. So, the field variables on the coset manifold
M4 = G/H are the vierbein one-formVa, the Lorentz spin connection one-form
ωab, the zero-formFab and the zero-formσ . Let us write the reduced one-forms
in the holonomic components as follows

Va = V .a
µ dxµ (5.2a)

ωab = ω.ab
µ dxµ (5.2b)

To relate both Hamiltonian formalism it is necessary to carry out the space–
time decomposition inM4. We consider fields and forms defined on a spacelike
x0 = t = t0 hypersurface6 of three dimensions. To this purpose we must consider
the injection mapχ : 6→ M4. Thus, the associated pullbackχ∗ acts on any form
by settingt = t0 anddt = 0.

Again we use Greek indicesµ, ν, ρ = 0, 1, 2, 3 for space–time tensors (world
indices), Latin indicesa, b, c for tangent space (Lorentz indices), andi , j , k =
1, 2, 3 to label spatial components only. The vierbein is split according to

V (4)
ai = V (3)

ai = Vai , (5.3a)

V (3)i
ai = V .i

a (5.3b)

V .i
a Vbi = ηab+ nanb, (5.3c)

V (4)i
a = V (3)i

a + (N⊥)−1Ni na, (5.3d)
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where the normalna = nµVaµ to the hypersurface6 satisfies

na = −N⊥ V (4)0
.a , (5.4a)

naVa
i = 0, (5.4b)

nana = −1, (5.4c)

and nµ = (−N⊥, 0, 0, 0). In the above equationsNi and N⊥ are respectively
the usual shift and lapse functions which determine the components of the four-
dimensional metric tensorgµν .

Moreover, we take into account the properties for the alternating tensorεabcd

in tangent space and the alternating tensorεijk on6 given in Nelson and Regge
(1986) and the following normalization properties

6i = 1

2!
εijk dx j 3 dxk, (5.5a)

Äx = 1

3!
εijk dxi 3 dxj 3 dxk = g1/2 d3x, (5.5b)

εijk ε
lmn = 3! δlmn

ijk (5.5c)

whereg is the determinant of the metricgi j of the surface6.
Consequently, the relationship between the two-form canonical momenta de-

fined in the CCF and the components of such momenta can be given. These rela-
tionships can be extended to the three-form canonical conjugate momenta5ab and
5 of the zero-form fieldsFab andσ respectively. Therefore it is possible to write

πa = 1

2
π i
.a(x) εijk dx j 3 dxk g−1/2 = g−1/2π i

.a(x)6i , (5.6a)

πab = 1

2
π i
.ab(x) εijk dx j 3 dxk g−1/2 = g−1/2π i

.ab(x)6i (5.6b)

5ab = 1

3!
2ab(x) εijk dxi 3 dxj 3 dxk g−1/2 (5.6c)

5 = 1

3!
2(x) εijk dxi 3 dxj 3 dxk g−1/2 (5.6d)

where the components of fields and canonical conjugate momenta verify the usual
Poisson bracket relations[

Va
.i (x), π i

b(y)
] = −[π j

b (y), Va
.i (x)

] = δa
b δ

j
i δ

3 (x, y), (5.7a)[
ω.ab

i (x), π j
cd(y)

] = −[π j
cd (y), ω.ab

i (x)
] = δab

[cd] δ
j
i δ

3 (x, y), (5.7b)[
Fab(x),2cd(y)

] = −[2cd(y), F .ab(x)
] = δab

[cd] δ
3(x, y), (5.7c)[

σ (x),2(y)
] = −[2(y), σ (x)

] = δ3(x, y). (5.7d)
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Therefore, looking at the above equations the Poisson brackets between forms
can be written. For the pairs of canonical conjugate form variables (Va, πa) and
(ωab, πab) respectively

[Va(x), πb(y)] = 1

2!
δa

b g−1/2(y) εijk(y)dxi 3 dxj 3 dxk δ3(x, y)

= δa
b g−1/2(y) dxi 36i (y) δ3(x, y), (5.8a)

[ωab(x), πod(y)] = 1

2!
δab

[cd] g−1/2(y) εijk(y)dxi 3 dxj 3 dxk δ3(x, y)

= δab
[cd] g−1/2(y) dxi 36i (y) δ3(x, y), (5.8b)

and for the pairs of canonical variables (Fab,5ab) and (σ ,5) the expressions read

[Fab,5cd] = 1

3!
δab

[cd] g−1/2(y) εijk(y) dxi 3 dxj 3 dxk δ3(x, y)

= δab
[cd] g−1/2(y)Äy δ

3(x, y) (5.8c)

[σ,5] = 1

3!
g−1/2(y) εijk(y) dxi 3 dxj 3 dxk δ3(x, y)

= g−1/2(y)Äy δ
3(x, y) (5.8d)

By using the Eq. (5.8) and (2.1) for the form-brackets, it is possible to check
the consistency of the integral relationship (5.1) for pairs of canonical variables.
We remark that (5.1) is the key equation that permits us to relate the CCF with
the CVF. This is important because the CCF is useful, for instance, to study the
constraints, the total Hamiltonian and the equation of motion at classical level.
Moreover, as already seen this can be done in a very simple way without heavy
algebraic manipulations. On the other hand, when the quantization of the model
is treated, it is necessary to appeal to the CVF formalism.

To conclude the discussion we comment something about the relation between
the Hamiltonian bosonic form coming from the CCF and the Hamiltonian of the
CVF which is the true generator of time evolutions.

The rate of change in time of any functionalA of the canonical variables is
given by the standard Poisson bracket ofA with the total HamiltonianH

Ȧ = [ A,H] (5.9)

From the bosonic four-formH (4)
T provided by the CCF, we first make the space–

time decomposition ofM4. Next, by choosing the time variable so that the one-form
dx0 can be detached, we have∫

H (4)
T =

∫
dx03H, (5.10)



P1: JQX

International Journal of Theoretical Physics [ijtp] pp1009-ijtp-474208 November 12, 2003 0:50 Style file version May 30th, 2002

Topological Five-Dimensional Chern–Simons Gravity Theory in CCF 2719

and we consider the remaining bosonic three-formH integrated in the three-
dimensional surface6. It can be proved that the HamiltonianH turns out to be of
the form

H =
∫ [

1

2
ωab

0 Hab(x)+ Va
0 Ha(x)

]
d3x (5.11)

whereωab
0 andVa

0 are the time components of the one-form field variables. The
explicit computation ofHab(x) andHa(x) involve heavy algebraic manipulations
which we omit here. Instead we give the fundamental properties of these quantities.

It can be proved thatHab(x) andHa(x) are weakly zero quantities, and
they are the first-class constraints of the coupled system under consideration.
Subsequently, the constraintHa(x) can be decomposed in two weakly zero pieces,
i.e.,Va

0 Ha = N⊥H⊥ + NiHi

Finally, the three quantitiesHab,H⊥, andHi closes the constraint algebra
(see for instance Teitelboim, 1977).

6. CONCLUSIONS

The topological five-dimensional Chern–Simons gravity was not previously
studies and analyzed in the framework of the group manifold approach for gravity
(or supergravity). This powerful method allows us to formulate gauge gravity (or
supergravity) theories in any dimension by using only geometrical arguments. The
efficacy of the method is made evident when the theory is formulate in more than
four dimensions.

From the above results it is shown how the extended CCF can be used to
describe the dynamics of the topological five-dimensional Chern–Simons grav-
ity. This nonlinear model of gravity contains a Gauss–Bonnet term caudratic in
curvature, the usual Einstein term, and a cosmological constant term. From the
geometrical Lagrangian density (2.6) which verifies all the prescriptions of the
group manifold approach and by using exterior algebra the first-order CCF was
constructed. This first-order formalism covariant in all their steps allows us to
find the equations of motion and the constraints in a very simple way. Analo-
gously to the usual Dirac’s method for constrained Hamiltonian systems, the CCF
is more adequate to distinguish between the true physical degrees of freedom
and the apparent gauge degrees of freedom. So, the CCF seems to be more use-
ful to understand the structure of the gravitational field. Later on, by means of
the toroidal-dimensional reduction process, an U(1) gauge model is obtained, in
which the different effective interactions can be analyzed. So, by starting from the
five-dimensional Chern–Simons gravity theory which naturally contains a Gauss–
Bonnet term, and by using purely geometrical arguments, an interacting model
with nonminimal coupling to gravity can be constructed. Moreover, the nonlinear
interactions modifies the Einstein–Maxwell–dilation theory. As it can be seen this
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model is more general than the Kaluza–Klein model in which the Gauss–Bonnet
term is introduced by hand.

On the other hand, the CCF is useful for classical formalisms, but at quantum
level the canonical vierbein formalism must be used. In the CVF the Hamiltonian
is the true generator of time evolution, therefore the relationship between the
CCF and the CVF must also be analyzed. By omitting explicit calculation, the
true Hamiltonian as generator of time evolutions was given in terms of the first-
class constraints which closes the constraints algebra. This was found in complete
analogy to what happens in the simple gravity theory.

Finally, in a future work the supersymmetric completion (Ferraraet al., 1987)
of the five-form (3.1) will be studied in this context.
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